The Light-Dependent Transduction Pathway Controlling the Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase in Protoplasts from Digitaria sanguinalis.
نویسندگان
چکیده
Phosphoenolpyruvate carboxylase (PEPC) was characterized in extracts from C4 mesophyll protoplasts isolated from Digitaria sanguinalis leaves and shown to display the structural, functional, and regulatory properties typical of a C4 PEPC. In situ increases in the apparent phosphorylation state of the enzyme and the activity of its Ca2+-independent protein-serine kinase were induced by light plus NH4Cl or methylamine. The photosynthesis-related metabolite 3-phosphoglycerate (3-PGA) was used as a substitute for the weak base in these experiments. The early effects of light plus the weak base or 3-PGA treatment were alkalinization of protoplast cytosolic pH, shown by fluorescence cytometry, and calcium mobilization from vacuoles, as suggested by the use of the calcium channel blockers TMB-8 and verapamil. The increases in PEPC kinase activity and the apparent phosphorylation state of PEPC also were blocked in situ by the electron transport and ATP synthesis inhibitors DCMU and gramicidin, respectively, the calcium/calmodulin antagonists W7, W5, and compound 48/80, and the cytosolic protein synthesis inhibitor cycloheximide. These results suggest that the production of ATP and/or NADPH by the illuminated mesophyll chloroplast is required for the activation of the transduction pathway, which presumably includes an upstream Ca2+-dependent protein kinase and a cytosolic protein synthesis event. The collective data support the view that the C4 PEPC light transduction pathway is contained entirely within the mesophyll cell and imply cross-talk between the mesophyll and bundle sheath cells in the form of the photosynthetic metabolite 3-PGA.
منابع مشابه
Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase
The photosynthetic phosphoenolpyruvate carboxylase (C(4)-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca(2+)-dependent step. The present study investigates the cascade components at...
متن کاملRegulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase (A Cardinal Event Influencing the Photosynthesis Rate in Sorghum and Maize).
C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to wh...
متن کاملIn Vivo Regulatory Phosphorylation Site in C 4 - Leaf Phosphoenolpyruvate Carboxylase from Maize and Sorghum 1
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malatesensitivity of the target enzyme has been recently identified as Ser-15 in 32P...
متن کاملIn Vivo Regulatory Phosphorylation Site in C 4 - Leaf Phosphoenolpyruvate Carboxylase from Maize and Sorghum 1
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malatesensitivity of the target enzyme has been recently identified as Ser-15 in 32P...
متن کاملA conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase.
Higher plant phosphoenolpyruvate carboxylase (PEPC) is subject to in vivo phosphorylation of a regulatory serine located in the N-terminal domain of the protein. Studies using synthetic peptide substrates and mutated phosphorylation domain photosynthetic PEPC (C4 PEPC) suggested that the interaction of phosphoenolpyruvate carboxylase kinase (PEPCk) with its target was not restricted to this dom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 8 4 شماره
صفحات -
تاریخ انتشار 1996